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Abstract. We propose and study unlearning in the paramagnetic phase of neural network
models. More precisely, we introduce the evolution equation of synaptic interactions given
by Ji = J4 — és’s?, where S¢, the dth dream, is generated by the paramagnetic
dynamics of the/¢ model. Whené is much smaller thars; S/-)i(,, we obtain the interactions
Jl.‘j.*d" = J;} — €(8; ;) a afterdy dreams, wherel is a large integere is édp which should

be smaller than 1 andf; S;) ;« is the paramagnetic correlation function of thé model. The
introduction of the paramagnetic correlation functions opens the possibilities for some analytic
studies of unlearning. In this paper, we present two studies about the second equation by using
the high-temperature expansion. In the first study, temodel is assumed to be the Hopfield
model and the signal-to-noise ratiofor the J¢+% model, which is called the/’ model, is
studied. r is evaluated to the infinite order ¢f = 7-1 in the thermodynamic limit, giving
affirmative results for paramagnetic unlearning. When the interactional changes are large, the
J’ model becomes a poor approximation for the resulting models. In the second study, the
above equation is regarded as the iterative equation for eigedyeams. An expansion rafe

for J;j is introduced to control the amplitude of interactions for the large interactional changes.
We find that, to the second order @f the fixed-point interaction is given by the pseudo-
inverse type forii > Bé. For both studies, some results of numerical simulations are presented,
which are consistent with the analytic results. Our analytic and numerical studies imply that
pattern correlations hidden in the correlation function appear naturally in interactions through
paramagnetic unlearning.

1. Introduction

During this decade, many interesting ideas about neural networks have been developed
from the point of view of statistical physics. In particular, the studies of associative memory
provide us with many interesting insights into the cooperative phenomena of neural networks
[1,2]. Among many neural network models, the Hopfield model is important, since it is
simple enough to allow analytic studies and yet it has many interesting aspects as an
associative memory.

The Hopfield model is an infinite-range spin model which has interactions prescribed by
the Hebb rule. In the Hebb rule, learning is implemented by enforcing synaptic interactions
between neurons. That is, when a pattern to be learnt has a datomneuroni andé;
on neuronj, the change of the interaction between neur@amd neurory is assumed to be
proportional to&;&;. We should note that this rule is local in the sense that an interactional
change between two certain neurons is determined only by the temporary data on these two
neurons.
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The ability of an associative memory is mainly characterized by the capacity, the number
of patterns the model can memorize, and the quality of retrieval. In this respect, the Hopfield
model has several aspects which remain to be improved, i.e. it has a small capacity and
many spurious states. These two aspects may be closely connected since many spurious
states occupy a large proportion of the configuration space.

Several authors have suggested methods to improve the capacity and quality of retrieval.
Among them, the pseudo-inverse model shows perfect retrieval and a remarkable increase
of the capacity [3,4]. However, this model does not satisfy the locality of learning since
interactions among neurons are characterized by the pattern correlation matrix. Thus the
pseudo-inverse model has been studied mainly for technological interests. If we can find a
local evolution rule which brings the Hopfield model into the pseudo-inverse model, it will
also become relevant to biological studies of neural networks.

Several years ago, some biologists suggested a very interesting idea which improves
the properties of a neural network, that is, unlearning of spurious states [5,6]. The main
idea of unlearning is to destabilize spurious states by the anti-Hebb rule. In this method,
a spurious state is found by random shooting and zero-temperature spin dynamics. Some
simulations shows that the improvement is really observed by iterations of unlearning [7, 8].
A biological assumption is that this procedure corresponds to rapid eye movement (REM)
sleep found widely among mammals and spurious states being unlearned are dreams one
sees during sleep. We can find many illuminating observations about REM sleep and neural
networks in [5].

In this paper, we propose and study another version of unlearning, which seems more
natural from the point of view of statistical physics. That is, we assume that dreams
to be unlearned are spin configurations generated by the paramagnetic dynamics of the
neural network model. This idea is inspired by learning with thermal noise suggested in
[9]. Statistical mechanics tells us that the configurations generated by the paramagnetic
dynamics obey the Maxwell-Boltzmann distribution. Thus spurious states or configurations
close to them appear very frequently in such dynamics if they have lower energy than the
embedded patterns. Therefore we expect that an effect similar to unlearning by random
shooting also appears in our version. In addition, we can study the resulting models by
using the standard methods of statistical mechanics.

In section 2, we introduce unlearning with a finite temperature and describe the
formulation in terms of paramagnetic correlation functions. In section 3, the signal-to-
noise analysis of the approximated model, which we call thenode, is presented. To
do this study, we need some results about the high-temperature expansion of the Hopfield
correlation function, which is discussed in appendix A. Some numerical results about the
J’ model are presented in section 4. In section 5, we discuss some generalizations of the
iterative equation especially to treat large changes of interactions. Section 6 is devoted to
some discussions.

2. Unlearning in the paramagnetic phase

In this section, we define unlearning at a finite temperature and describe the formulation in
terms of the correlation function. Formally, unlearning at a finite temperature is achieved
by replacing spurious states to be unlearned with configurations generated by the finite-
temperature dynamics. We will show that, when the number of dreams is large enough, and
interactional changes are small enough, total interactional changes can be described by the
paramagnetic correlation function of the initial model. These conditions impose an upper
bound on the interactional change of each unlearning step.
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Let us first introduce some notations and describe the basic properties of the Hopfield
model. P memorized patterns are given by random quenched varigplles +1, where
w=12 ..., Pisapatternindex and=1,2,..., N is a site index. A site in this paper
means a neuron. The Hopfield model is described by the Hamiltonian

H=-3%"J;S5 1)
i#]
where interactiong;; are defined by
1
hi=y > glel ()
"

S; are Ising spin variables which takel. In this paper, we concentrate on uncorrelated
patterns, i.e&/ are quenched variables which takd with probability%.

The ratioe = P/N is an important parameter which measures how much the system
is loaded with memories. For small enoughthe model works as an associative memory,
that is, spin configurations close enough to a certain pattern evolve into that pattern under
suitable spin dynamics. The thermodynamic study of the model gave us some ideas about
states of the model [2]. It was shown that the phase diagram is rather complicated in
the space ofr and temperaturd’. Fora < ac ~ 0.14, the model shows three phases:
paramagnetic, spin-glass and retrieval phase as the tempefatigereases. The spin-glass
transition takes place & = Ty = 1+ /. The retrieval phase appears at much lower
T. WhenT is equal or close to zero, the model has spin-glass states, mixed states and
retrieval states. Mixed states are the mixture of embedded patterns. The spin-glass states
have the lowest energy far > 0.05. Fora > «c, there is no retrieval state even as a
metastable state, yet spin-glass states remain. We call mixed states and spin-glass states
together spurious states. The existence of too many spurious states is not desirable for an
associative memory. In addition, rather higimplies that spin-glass states dominate the
configuration space.

The main idea of unlearning is to destabilize these states by the following procedure. Let
us take the system which is loaded with too many patterns to work as an associative memory.
Imagine S; are set to be random, that is, random shooting. Wite= 0 spin dynamics,
the random configuration evolves into a fixed paiptwhich usually has little correlation
with embedded patterns. This means that the dynamics found a spurious state. This state
certainly corresponds to a dream if we assume that unlearning really happens during REM
sleep [8]. Thus, by this analogy, the configurations to be unlearned are also called a dream.
Then the system unlearns this dream by the replacem,@;n:‘;, Jij—€nin;, whereé is a small
positive constant, which we call a unlearning parameter. Some simulations shows that the
improvement of the capacity and retrieval quality are really observed by the iteration of this
procedure ife is properly chosen. We should note here that random shooting corresponds to
T = oo spin dynamics if we assume that spins are always driven by some finite-temperature
dynamics. We call the scheme described here random shooting (RS) unlearning.

Our suggestion in this paper is that the dreams to be unlearned are simply generated
by the paramagnetic dynamics of the neural network. This assumption means; that
are replaced by spin configuratio§s generated by the high-temperature dynamics. Here
we do not discuss a biological origin of the paramagnetic dynamics. Ordinary stochastic
dynamics characterized by a temperature is sufficient for our argument. We call this scheme
paramagnetic (PM) unlearning.

Let us assume tha$; are generated by Monte Carlo (MC) dynamics [10] with a
temperaturel’ higher thanTy and we do unlearning of; for every MC step. Then théth
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dream is given by

S Prob 1 p(BAH, (i) 3)
i = _Slgl—l Probp(BAH,(i))

for all i asynchronously, and interactions are modified to
d+1 d = ¢d ¢d
Jij+ =J —€S;S; 4)

after a whole sweep of the system, whegge= T-1 and AH, (i) is the change of thdth
model energy caused by the spin flip on sitewhich is given by 3/~*3"., 745/,
p(BAH,(i)) is a probability of the flip of spiri of the paramagnetic dynamics. We assume
thatd starts from 1,52 is a random initial configuration ant)% is the Hopfield interaction.
We takeT which is not close tdy. The explicit form ofp(x) depends on the type of MC
simulation. € should be proportional to/V. Below, we will give an argument about the
suitable value of for PM unlearning.

The evolution equation defines the sequence of models stochastically/tiT heodel is
called theJ¢ model. To see what the resulting models will be, let us first study the relation
between the/¢ model and the/¢+% model. This relation is formally given by

d+do—1
=gt —e > sist (5)
d'=d

Let us assume that the change of the interactions is small enough. This means=thds
is small enough. Then we can approximate the spin configurations in the sum to the ones
generated by thg¢ model. Further, in thely — oo limit, the time average reduces to the
thermal average with the Maxwell-Boltzmann distribution of tifemodel. Therefore, to
the first order ofe, the J?+% model has interactions given by

T = T8 — €(8;8;) 4 (6)

ij
where(S;S;) 4 is a paramagnetic correlation function of thé model, which is defined by

(SiSj)se =) S:S; ex(—BHy)/Z @
{S}

whereZ =} i, exp(—pH,). The summatior)_, is over spin configurationsH, is the
energy function of the/¢ model. Sincel;ﬁ and (S;S;) j« are the same order of magnitude
in (6) (see below)e should be some positive constant much smaller than 1.

In the above argumeng, is assumed to be small enough. The value of suitabie
important especially in numerical simulations. Let us clarify the condition &hat small
enough. The second term of (5) is a sum4af which are nearly random. In general, a
random sequence aEl of dy length has an average of ordefidy. This value should
be much smaller thags;S;),« to have correlation effects in the sum. Then we get the

condition ¥dy < ((S;S;) )%, where--- is the& average of - - . Therefore we obtain

€ K ((8;8)0)? €
where e was set to 1 since it is irrelevant in this inequality. The right-hand side can
be estimated by the high-temperature expansion. If we take the first-order tefin of
((S;S;)4)? is given byﬂz(Ji‘;'.)2 ~ ,32J02/N, whereJy is of order 1. It is interesting that the
value suggested for RS unlearning [8] satisfies the condition with a modgraihough
their scheme is different from ours.

We study two versions of equation (6) in this paper. The first is that, whisnset to
be 1, equation (6) is regarded as a definition of the model which appearsiaffeeams
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starting from the Hopfield model. This model is called themodel. In this case, we can
study the correlation function explicitly since it is defined by the Hopfield model. Sections 3
and 4 are devoted to the study of tliemodel. Whene becomes large, th¢” model will
be a poor approximation of the resulting models. In the second study, equation (6) is
regarded as an iterative equation for eveégydreams. In this method, the large change of
interactions can be treated. However, wrvgé’nchanges greatly, we should be careful about
the magnitude ofl“ since our arguments are based upon the paramagnetic phase of neural
networks. In addmon to this, the inequality (8) can be violated wiigiecome too small.
In section 5, to avoid this problem, we introduce the expansion rate!"‘fdo control their
amplitudes and study the generalized iterative equation which shows better performance.
Our discussion so far is rather formal. Everything is hidden in the paramagnetic
correlation function. In the next section, we discuss the signal-to-noise analysis of the
J’ model by using the high-temperature expansiog%s;) .

3. Signal-to-noise analysis of the/’ model

In this section, we discuss the signal-to-noise analysis of thenodel defined by the
interactions

Ji; = Jij — €(SiS)) (9)

where (S;S;) is the paramagnetic correlation function of the Hopfield model. This model
is a speC|aI case of (6). The main concern in this section is whether the second term in (9)
really improves the signal-to-noise ratio of the Hopfield model or not.

To begin with, we describe the high-temperature expansiofSd;). Following the
common procedure, it can be expanded in terms ofﬂah,h BJ:;, where the higher-order
terms of 8J;; are dropped sincd;; ~ 1/+/N. The result is given formally by

(S:S;) = BJij + B* Z, Jindij + B3 Z, JicJadij +---. (10)

Each term is represented by a diagram which has vertices for sites and edges for interactions.
In the sum)_’, no two indices are equal to each other since a loop of edges should be
factorized to cancel the denominat@dr This point is important for the Hopfield model
since the number of loops is relevant foraverages (see appendix A). The spin-glass
transition temperature is given by the point at whichs;)? diverges. In appendix A, we
describe the evaluation using diagrammatic representations. The result is

1 A
(SiSj>2 = Nm (11)
where
ap?
- 1-p? 42

(8;8;)? diverges al’ = 1+ ,/a. The higher temperature should be adopted as the transition
point. In this way, we obtaiffy = 1+ /«, which is the same result as the replica method.
At the end of this section, we obtain another derivation of (11) as a by-product of the
signal-to-noise analysis.
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Now we discuss the signal-to-noise analysis of fhenodel. Let us study the stability
of pattern 1. The local field on sitefor this configuration is given by

hi = &

Jj#
=Y JiE —e ) (SiS)E (13)
J#i J#i

If &! x h; is positive for all or almost all sites, pattern 1 is expected to be stable. To see
this, h; is decomposed into a signal pag which is proportional ta&! and a noise part,
which is not correlated witl§!. The first term in (13), i.e. the local field of the Hopfield
model, is decomposed into

doEt =g+ Y el (14)

J#i J#i L
Wherej,.’;. = gi“gj”/N. The first term is a signal and the second term is a noise, which we
call a Hopfield noise. The signal-to-noise ratig,/ hs| in this case becomeg/x in the
N — oo limit, which is small for smalle. Thus the local fields are parallel with for
almost all sites for small enough. For the Hopfield model, it was shown by the replica
method that the upper limit of the signal-to-noise ratio which allows the retrieval phase is
J/ac ~ 0.37. We take this value as a reference for thiemodel for the possible retrieval
phase.

Let us now study the second term of (13). According to the high-temperature expansion,

the coefficient ofg" is given by

Z Z T -+ Jij&} (15)

JF#

where each term is a product afJs. In this expression, there are signal terms, Hopfield
noise terms and other kinds of noise terms which are absent in the Hopfield model. To be
specific, let us concentrate on the second-order terms, which become

D0 Tudgg =3 > 3 Y ki (16)

J#L kL] J#LkFL ] wv

after puttingJiy = 3, Jji;- Note here that the site indices are all different, while the pattern
indices are free from any restriction. If we neglect the restriction on the site indices, the
correlation matrixC** = 3", &€’/ N appears after the sum. This fact was found in [9]

in a different context. Thus it is natural to expect that this term changes the signal-to-noise
ratio of the Hopfield model.

To find the signal part and the noise part of (16), we should group the terms in (16)
according to the correlation under graverage. The number of different pattern and site
indices is a good guide for this purpose. Let us concentrate on the pattern indices. The
formulae)”, jiJjg = jjand)_, ji & = &7, which are valid forN — oo, are convenient in
the following evaluation. The contribution to the signal part is given by the jeemv = 1,
giving &1, whereas the noise part is decomposed into several uncorrelated elements. The
Hopfield noise comes from = v # 1 andu # v = 1, which make 2« Zj#mél jl.‘J‘.éjl.

We should note that each contribution corresponds to a position at which pattern indices
switch when we follow the expression (16) from one end to another. There are other types
of noise, the term withu # v # 1, whereu can be 1. In general, we can also group the
higher-order terms according to the number of positions the pattern indices switch.



Unlearning in the paramagnetic phase of neural network models 3877

These observations imply that after puttivlg = ZM ji; in equation (15), terms are
categorized according to the number of positions where the sequence of pattern indices
changes. In this way we reach the expression fomtheorder term

Z Z/ T -+ -Izjé:jl — Eil + Z <n> ZZ// (p) (17)
J# p J#

where we have introduced the abbrewatlgj‘i = jixJu -+ Jl- The indices other than

or j are dropped m;l” since they always appear in the syni’. The sum).” means

that all site indices are different and two neighbouring pattern indices are also different. As
we discuss in appendix By." j (")gl of different p are not correlated to each other in the

N — oo limit. In this sense, they work like a set of basis functionstespace. Using this
expression, we obtain

Sissis = (L) (X ())r) SE e

J# J#

=1 ﬂs +Z(1 WHZZ JiDE (18)

In this expression, the signal term has a coefficigntl — 8), while the Hopfield noise
term, the term withp = 1, has a coefficieng/(1 — g)2. That is, their ratio 1(1 — B) is
different from 1. This is the reason why the correlation function changes the signal-to-noise
ratio of the Hopfield model. The amplitudes of other types of noise are evaluated by using

the formula
(ZZ// ]l(p)g )(ZZ ]l(p) > =8 ,af (19)

J# J'#
which is valid in theN — oo limit, where s, is a Kronecker delta. See appendix B for a
derivation. Using this formula, we finally obtain the expression

hi :Z‘Ii/jé‘_j‘lzhsgil-i-hn (20)
Jj#i
where
_ ep
S (21)
€p 2 €2 A2
|hn|w‘/<1_ (1—ﬂ)2> “ta—prioa (22)

The ratior = |hn/ hs| has a minimum at some positivesince|k,| decreases more rapidly
than s ase increases from zero. The study of the minimumraB straightforward. We
discuss this point in the next section.

To conclude this section, we sketch another derivatiori$$;)2. By following the
same procedure as aboV;S;) is written in the form

20 P "
(S5 => G/EW SV, (23)

4

Using the relation(}" ]fp))(z” i) = 8,y /N, which is derived in appendix B, we
obtain the same result as in appendlx A.

In the next section, we discuss the behaviour gfnd compare it with the results of
computer simulations.
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4. Numerical study of the J’ model

In this section, we study the behaviourradind present some numerical results of simulations
of the J/ model. Let us first study the value efwhich minimizesr. By differentiatingr?
with respect tae and solving the resulting equation, we find thaiakes the minimum

_ AVa+ 1-pRL-4)
B B2+ A — B2A

(24)

'm

at

. 1-p*A-4)
T1-A-pa-A)

rn decreases a8 decreases and tends to the smallest vali¢l + « when — 0. In
this limit, ¢, tends to(1/8) — (2+ «) and the interactions of th&’ model reduce to

Jij = /3{(2+a)~lij — Z Jik~’kj}~ (26)

ki, j

(25)

The reason that a small gives a smallr,, is that the factorA?/(1 — A) of the second
term in |hy|? becomes rather small for smadl. If we adopt./ac ~ 0.37 as a critical
value of r, the best critical capacity. of the J' model is determined by the equation
a/+/1+a = /ac. This yieldsa; ~ 0.42, which is about three times the critical capacity
of the Hopfield model. In the computer simulations, however, too sphal not desirable
since(S;S;) becomes very small and more théis; S;)2)~1 ~ N/A ~ N/(ap?) MC steps
are required to have a correlation effect as discussed in section 2.

Two kinds of simulation are presented here. In the first case/tmeodel is explicitly
made by evaluatings;S;) by MC simulations. In the second case, the iterative equation
for J;j suggested in section 2 is simulated directly. For spin dynamics, the Metropolis
function, p(x) = 1 for x < 0 andp(x) = exp(—x) for x > 0, was used. In both cases, we
want to know whether the embedded patterns are stable or not. This stability is a necessary
condition for associative memory. Thug' = )" &0/ /N, whereo/" is obtained byl' = 0
spin dynamics starting frory, is evaluated for every some MC steps. The average*of
over patterns and some samples is denoteg: by

Let us study the first case. To be specific, we mainly discuss the simulations for
(e, B) = (0.2,0.5). These values give, = 3 andr, = +/0.1 ~ 0.32, which is smaller
than /ac ~ 0.37. The small value ot,, is desirable if we want the/’ model to be
the approximation of the original iterative equation. System sizés 200. For these
parametersN/A is of order 18. The MC stepsiy should be much larger than this value.
To make theJ’ model, (S;S;) were numerically obtained by the Monte Carlo simulation
with mainly 1 MC steps. We found that, for these values of parametgs;)? takes a
value close to (11). After obtainings;S;), the interaction/;; = J;; — €(S;S;) is assigned
to the Hamiltonian. Figure 1 shows tkedependence of: for («, 8) = (0.2, 0.5) with
the signal-to-noise ratip. Figure 2 shows the results 0.3, 0.3) with various MC steps.
The maximum ofm clearly tends tc,, as the number of MC steps increases. Note that
N/A ~ 10* for this («, 8), which is the lower bound of MC steps to have correlation effects
in the sum (5). This explains the improvement fronf 1 1 MC steps. We suppose that
some amount of random noise is induced $aS;) by the numerical evaluation with finite
do. For example, we will get a maximum @f neare ~ 0 if the MC steps are too small
to give the thermal average. This explains the reason why the maximaak always
placed ate smaller thare,, and they shift toe,, as the number of MC steps increases in
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Figure 1. The overlapm evaluated for the/’ model with (¢, 8) = (0.2,0.5) and N = 200.
The signal-to-noise ratie = |hn/ hs| is also depicted by a broken curvetakes the minimum

rm = ~/0.1~ 0.32 ate,, = % for these parameters. The averagesnd their sample fluctuations,
which are denoted by error bars, are evaluated for 10 samples.
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Figure 2. The overlapm evaluated for the/’ model with (¢, 8) = (0.3, 0.3) and the signal-
to-noise ratior = |hn/hs| which is depicted by a dotted curveéy = 200. Each curve ofn
corresponds to a different number of MC steps to eval($ts; ), which are 16, 1P (average of

10 samples), and £qone sample) MC steps from the bottomtakes the minimunt,, ~ 0.34
ate, ~ 1.37.

figure 2. Except for this aspect, the numerical results seem to be in good agreement with

the signal-to-noise ratie.
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Figure 3. The evolution ofm evaluated by the iterative equation of tHé model for two
samples.N = 200. The full curve shows the same as in figure 1, which are connected by
lines to guide the eye. In the case of thi# model, the horizontal axis means= éd, where
e=105,

In the second case, the original iterative equation (4) was simulatedofgf) =
(0.2,0.5). We adoptede = 10°°, which is about the inverse of the MC steps of the
first case. The numerical results far are presented in figure 3 with the result of the first
case. Note that the horizontal axis for the second case meanéd. For ¢ smaller than
0.4, the two simulations give a similar behaviourmefas expected. The case @3, 0.3)
was also studied in the same way. In this casealso keeps increasing but shows poor
results around the minimum efsincee,, is rather large.

Whenq is not so small or when a better retrieval property is demanded, we should study
a rather large change of interactions. This requires a lot more MC steps for the iterative
equation. In the next section, we will discuss this situation.

5. Study for large interactional changes

This section is devoted to the study of large interactional changes caused by PM unlearning.
When we have to deal with large interactional changes, the amplitude of interactions
becomes an important problem. That is, if it gets smaller and smaller as unlearning proceeds,
the upper bound o@ in section 2 will be violated sinc€(S;S;) :)? ~ /82(Jl.‘f)2 becomes

very small. On the other hand, when interactions get larger and larger, our scheme of
unlearning breaks down since the spin configuration will be trapped in a certain valley of
the energy function. Here we suggest introducing the expansionuréte interactions to
control their amplitude. Then the iterative equation which is studied in this section is given

by

d+1 _ —\gd _ =qdgd
Tt = A+ p)Jf —esdsy. (27)
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S,.d obey the same dynamics as in section 2. We expect that the expansion vete
balance the contribution from the second terms.

5.1. Study of the iterative equation

Let us discuss thé?+% model defined by (27) using the formulation introduced in section 2.
The situation here is a bit different singeinduces terms likgl + ﬁ)d"dS;’Sj‘.". However,
the factors(1+ )¢ ¢ — 1~ ju(d’ — d) only give next-order corrections to the correlation
function. Thus we can sgt = 0 in the sum over paramagnetic configurations. Therefore
in the largedy limit with a small fixed Ar = €dp, we obtain
Jij(t+Al) = (1+9A[)Jl,(1)— At(SiSj)j([) (28)

to the first order ofA¢, where we have introduced the time variables €d and the ratio
0 =n/e.

Let us study this equation by high-temperature expansion. In this paper, to make the
arguments as simple as possible, we restrict ourselves to the second ofdeviaéh gives
the first non-trivial effect. The studies including higher-order terms will be done in a similar
way. To the second order ¢, we obtain

Jij (6 + A = (L+ BSAN T (1) — Atp? Y T (1) Jiy (1) (29)

ki, j
wheres = (0 — )/B. The fixed point is given by setting; (r + Ar) = J;;(t) = Jlf If the
two terms withk = i, j are added and subtracted in the sum and assutfing J|, we

find that one solution for the fixed point is the pseudo-inverse-type interaﬁ}joa aT;j,
where

T = % doscgy (30)

Y

and C*¥ is a pattern correlation matrix. The amplitudeis determined by (29), which
becomes

8§ = (1— 2a)ap. (31)
This yields

)

W= "%
where we have usedf; ~ aa. This solution is valid whemg is positive and small enough.
The singularity atx = 0.5 is an artefact of the second-order approximation. Higher-order
terms ofg should be taken into account wheris around (6. Even with higher-order terms,
we suppose that the solution of the fixed-point equation will also be given by (30), since,
in every order of the expansion in terms ﬁ)ﬁ'i?, eachC~! is always associated with the
matrix C. The questions are how the restrictions on site indices affect this simple structure
and whethem can be positive or not. In this paper, we restrict ourselves to 0.5 and
not close to 0.5.

Let us discuss the solution of (29). As was done for the fixed point equation, it is

convenient to introduce diagonal interactions(r) in the site sum. The dependence of
J;i (t) will be specified later. Thug?Ar(J;;(t) + Jij(1))Ji;(¢) is added in the second term
and it is subtracted from the first term. We further assufp€) to be J, for all i, which
is the site and average of/;;(t). Then we obtain

Jij(t + A = (L4 pAD T (1) — g At Y Ty () i (1) (33)
k

(32)
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wherep = B8 +2p8%J, andg = 2. Now it is natural to defind;; (r) by the elements with
i = j in (33). Then equation (33) can be regarded as a matrix differential equation for the
interaction matrix/ (). Note thatJ/;;(0) should beZM §/'¢/'/N = a, the fictitious diagonal
elements of the Hopfield interactions.

If we neglectp, the solution of (33) is given by the model discussed in [9]. Although
the + dependence op will not be so strong, we can take it into account by assuming the
same form as in [9] with-dependent parameters. Thus we assume

1
Jij®) =5 ) Jik <>

s u 1 \" .,
=y 24 (l+rC) 5 54
)

where J is an initial interaction matrix, whose elements are the Hopfield interactions.
s and r are functions oft. From the first to second line, we have used the relation
S i = &'C*E]/N etc. AlthoughJ, defined by (34) is a complicated function
of s andr, we can use the approximated forms in the limiting situations. Thalisy sa

for r — 0 andJ,; — as/r for r — oco. The differential equations for andr are obtained

by replacings — s + As andr — r + Ar in (34) and comparing it with (33). In this way,
we obtain

% = p(s, r)s % =gs (35)
where p(s,r) = p. The initial conditions are = 1 andr = 0, which give the Hopfield
model. If p(s,r) does not depend on the solutions of (35) have a simple exponential
form. The corresponding solution (34) can be obtained from (33) directly.

The solution of (35) is explicitly obtained for smallor larger. For smallz, we obtain
s=1+bt+---andr = B + ---, whereb = B8 + 2aB2. For largetr, we expect that
r — oo and thats/r becomes some constant for positi&e Actually, usingJ; — as/r
and this assumption, we find

s = c exp(Bat) r= c%' exp(p2at) (36)

wherea is defined by (32) and is a positive constant. This solution is valid when- 0,
which imposes the conditiod > 0. These results imply thaf;(¢) tend to the pseudo-
inverse interactions for > 1y = (8%a)~! for § > 0. Note the facton8s)~! in #9, which
controls the MC steps when the crossover takes place. This aspect is relevant in numerical
simulations even whef is not so small. Foé < 0, the limiting forms (36) are unphysical.
To discuss the solution for intermediatewe need to know/,; for moderater. As we will
see, the numerical simulations fdr< 0 imply that the amplitude of interactions becomes
so small that the condition od will be violated eventually. Our arguments are no longer
vaild in such a situation.

Let us give some comments about the results. First, actually) depend on for
finite systems, especially for small. This site dependence can create some noise in the
iterative equation. Second, the arguments so far are based on the hmi0. However,
€ and MC stepd are finite in computer simulations. As discussed in section 4, unlearning
terms will induce some random noise in simulations with figitérhese two kinds of noise
can cause a large deviation from the above results after many iterations. We also note that,
when the amplitude of the fixed-point model is too small, the condi&ieg ((S;S;),())?
can be violated before reaching the fixed point. Even with these points, we think that the
studies in this section are a good guide to understanding the results of numerical simulations.
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5.2. Numerical study of the iterative equation

Now let us turn to the results of computer simulations for the evolution equation (27),
where spin variables are driven by paramagnetic MC dynamics. To see what properties
the running models have, we have studied the ovenlaghe amplitude of interactions
V'N|J(t)|, signal-to-noise ratio;,, and 0, which is the overlap betweed; (r) and T;;.

The latter two quantities are defined by

rpn =+ (Ahz)a/ha

Q;=J@)eT/IJDIT]|
whereX e Y = Zi# X;;Y;j/N(N —1) and|X| = VX ¢ X. h, is the average of absolute
values of the local fields, which is defined by (13), ayidAh?), is its variance. Both
averages are evaluated over all sites and embedded pattgris.zero for the pseudo-
inverse model anq/« for the Hopfield model with smatt. By using|T| = vo — a?/+/N,
|J| = a/+/N andT e J = (@ — a?)/N, we see tha, is +/1 — « when theJ (r) model
is the Hopfield model. At the fixed point/N|J (r)| is given by

o Va—a?

VNIF| = (1—205),36 (37)
to the second order ¢, while it is \/o for the Hopfield model.

In figure 4@)—(d), the time developments of these quantities are presentgd f@) =
(0.2, 0.5) for every 1000 MC stepsN andé are 100 and 1, respectively.s are —0.2,

0.2 and 0.4. Wherie, 8) = (0.2, 0.5), we havery = 6/(56), which becomes X 10° MC

steps foré = 10~° and$ = 0.4. In all the simulations, we have studied up tx3.0° MC

steps. The results of the simulation f@r, 8) = (0.6, 0.5) with § = 0.4 are also depicted

for comparison. We have studied several samples in the same manner and found that the
sample fluctuations are not so large except for the details, @fhich are shown in figure 3.

Let us first look through the results af= 0.2.

In figure 4@) and p), the time developments @i andr, are depicted. The behaviour
of m can be understood in terms of that gf In general, as;, decreasesy increases
and becomes close to 1 when~ ,/ac. Fora = 0.2, m becomes 1 after about 10C
steps and stay there except for the casé ef —0.2, for which m starts to decrease at
about 4x 10° MC steps. This decrease is so small thabarely gets separated from the
m =1 line in figure 48). On the other hand, in figure 4, the difference between various
8 is rather clear.r, for § = —0.2 starts to increase at®x 10° MC steps, while there
are no such increases gf for positive §. At a given MC stepyy, is smaller for larger
8. This implies that the improvement of the models is quicker for lasgas discussed in
section 5.1, yet they do not reduce to zero in the studied MC steps. The increagse of
for negatives means that unlearning deteriorates the model as an associative memory. For
i = 0, which corresponds t6 = —1.0, we found that this happens in earlier MC steps,
although the model is improved in the beginning. As we have discussed in section 5.1,
the evolution with negativé does not seem to have a fixed-point model at least in our
framework.

Figure 4€) shows the evolution of/N|J (r)| for the same parameters. Fbe= —0.2,
V/N|J(1)| keeps decreasing, while it tends to some constant values=00.2 and 04. To
the second order g, the theoretical values for the fixed-point model are given by (37),
which reduces tcgs in this case. They are marked lay for each positives on the right
vertical axis. Note/N|J (+ = 5)| for § = —0.2 is about half ofy/N|J (¢t = 0)|. This means
that ((S;S;),))? becomes about one-fourth of the original value. Thus the condition (8)
tends to be violated.



3884

K Nokura

02+ E

0.7 T T T T
(b)

06 F

02k

01+ N

Figure 4. The evolutions of &) m, (b) r4, (c) /N|J(r)| and @) Q; obtained by the iterative
equation (27). The parameters die 8) = (0.2, 0.5) with § = —0.2 (short-broken curves),
0.2 (full curves) and @ (long-broken curves). We took the same samplesfer —0.2 and
0.4. In each graph, the evolutions féx, 8) = (0.6, 0.5) with § = 0.4 are also depicted by
dotted curves for comparison. All simulations were done with 10~° and N = 100. On the
horizontal axisr = €éd. (a) The evolution ofm. Fora = 0.2, it becomes very close to 1 in
less than 1x 10° MC steps, while it takes about >4 10° MC steps to become close to 1 for
o = 0.6. (b) The evolution ofr,. It is clearly shown how the models are improved. Note the
increase of, for § = —0.2. (c) The evolution of/N|J(r)|. Fora = 0.2 and positives, we
have the approximated values of the fixed-point moéél,given by (37). They are marked by
A for eachs on the right vertical axis.d) The evolution ofQ ;. For («, 8) = (0.2, 0.5), it first
increases then starts to decrease in the middle of the simulation(@Fgy = (0.6, 0.5) with

8 = 0.4, it keeps increasing during the MC steps studied.
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Figure 4. (Continued)

Figure 4@)—(c) imply that the critical point of the evolution should be betwéea —0.2
and 02. Although the observed transition is not so sharp, this supports fhist a critical
value of ii. Note thatg in this expression appears as a result of the high-temperature
expansion of the correlation function. To affirm thisdependence, we have studied the
time developments fop = 0.3 with variouss and obtained similas dependence of the
evolutions.

Figure 4€¢l) shows the behaviour aP;. It directly measures how similar the evolving
models are to the pseudo-inverse model. &es 0.2, 0, start aty/0.8 ~ 0.89 and increases
to about 0.96, but then it keeps decreasing in the last half of the MC steps. Among the
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studieds, § = 0.4 achieves the largest value. Although the decrease ofeems different
from what we have studied in section 5.1, we can think of several reasons for this. In
section 5.1, we have discussed two sources which create noise in the evolution equation.
These noises can cause large effects near the fixed point where the drive by the evolution
equation becomes very small. In additidn= 0.2 seems rather close to the critical point
of the evolution. This can be another reason for noise. Actually, maxi{jyabecomes
closer to 1 as increases in figure dj.

Although we do not have any analytic results for lawgethe numerical simulations
can be done for arbitrarg. In figure 4@)—(d), the results for(e, 8) = (0.6, 0.5) are
also depicted by dotted curves with the saMeande. § was assumed to be4) which
shows a faster improvement than smalief~-rom figure 44) and p), we see that, keep
decreasing aneg: becomes 1 around ¥ 10° MC steps. In figure 4(), v/N|J ()| increases
more rapidly than the case af= 0.2. v/N|J(t = 0)| is /0.6 ~ 0.775 and increases to 2.2
at the last MC step. There, the acceptance rate of Monte Carlo spin flip, which is usually
more than 50% ofV, becomes about 20% . In figure 4¢l), Q, starts aty/0.4 ~ 0.632
and keeps increasing during the studied MC steps. Other samplesrwitt0.6 showed
similar behaviour for these quantities.

To find the upper bound af which allowsm = 1, we did the simulations withh = 0.8.
In this case, howevery becomes only about 0.9 and we did not find any sets of parameters
which achieven = 1. Thus the critical capacity of PM unlearning is expected to be larger
than 0.6 but smaller than 0.8, yet this may change if we take différent

6. Discussions

Unlearning of spurious states is a very interesting subject in the study of neural networks.
The algorithm is local and the improvement is rather impressive. Biologically it is related
to an interesting hypothesis on ‘the function of dream sleep’ as discussed in [5].

In this paper, we studied unlearning in the paramagnetic phase of neural network models.
After the unlearning of many dreams, the changes of interactions are expressed by the
paramagnetic correlation functiofs;S;) of the initial model. The condition for this is

that the unlearning parameteris much smaller thars; S;)2. Using the high-temperature
expansion to studys; S;), we found that this condition is consistent with that suggested for
RS unlearning. We defined thE model by taking the Hopfield model as an initial model.
The signal-to-noise analysis of thié model was performed to the infinite order §f The
result supports the idea that our algorithm actually improves the Hopfield model. Briefly,
(S:S;) of the Hopfield model contains the correlation matrix among embedded patterns,
which changes the signal-to-noise ratio of the Hopfield model.

When interactional changes are large, the expansionirat@s introduced to control
the amplitude of interactions. Whegn= 0, interactions become relatively small after much
unlearning. Then the condition @anwill be violated eventually and unlearning terms begin
to work as nothing more than random noise. We suppose that this may also happen in
the simulations reported in some papers. In fhe — 0 limit with a suitablej/é€, the
iterative equation to the second order@has the pseudo-inverse model as a fixed point,
at least for smallkk. The appearance of the pseudo-inverse model is important since it can
memorize a set of strongly correlated patterns, for which the Hopfield model does not work
well. The simulations showed that the overl@y between the evolving model and the
pseudo-inverse model actually increases close to 1, but does not reach 1. We suppose that
€ should be much smaller than our value to get a better agreement with the theory.
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The studies in this paper were mainly addressed to siatid the stability of embedded
patterns. This is because, first of all, we wanted to see if our analysis using correlation
functions agrees with the simulations or not. The retrieval properties andddiged-point
models are the next subjects of study. To discuss the case wherd.5 or larger, we
have to take into account higher-order terms in the expansiai$;6f) ;). The study of
transient models will become important if there is no physical fixed point.

(a) (b)

Figure 5. These diagrams illustrate the change of energy landscape under PM unleathing.
denote the embedded patterns. The energies of the low-energy states are expected to become
equal after unlearning since lower-energy states are unlearned more according to the Maxwell—
Boltzmann weights.

To summarize the study, we present intuitive pictures in figure 5, which illustrates how
PM unlearning works. In figure &}, the energy landscape of the overloaded Hopfield model
is depicted. No embedded patterns are at the bottom of valleys. Instead, there are many
spurious states at the bottom of valleys having lower energy than the embedded patterns. In
this situation, spurious states are expected to appear rather frequently in the paramagnetic
dynamics since the probability of appearance obeys the Maxwell-Boltzmann distribution.
However, unlearning of them make their energy higher. As unlearning proceeds, their energy
will become equal to that of the embedded patterns as shown in figoye Hiis situation
is very similar to the results of replica studies for the pseudo-inverse model [4]. Under
this situation, spurious states and embedded patterns are expected to appear with an equal
probability in the dynamics. If unlearning goes further, there will be three possibilities:

(i) |J(¢)| decreases, (ii)J(z)| is rather stable or (iii))|J ()| increases. Unlearning of
paramagnetic configurations tends to make the energy landscape flat. This corresponds to
case (i). The expansion of interactions compensates for this effect. Thus case (ii) happens
when the expansion rafe is chosen properly. Wheg is larger, case (iii) happens and the

spin configuration will be trapped in a certain energy valley. The problem here is that, as
seen in (32), the range @f where (ii) is realized seems to become narrower or disappear
asa increases. It may be possible to think of some dynamigs which keepss+/N|J (1)

of order 1. However, it may spoil the locality of unlearning. Probably the simplest way to
avoid (i) and (iii) is just to stop unlearning.

Our formulation using correlation functions is quite general. Here we point out two
possible extensions of our study. Firstly, it is possible to apply the idea to various versions
of the Hopfield model which learn either memories with different weights or memories
with strong correlations. These kinds of patterns seem more natural since the environment
around us seems to give a great number of correlated patterns rather than a limited number of
uncorrelated patterns. Besides, their weights, the frequencies of learning, depend on patterns.
It will be quite interesting to study how unlearning works in such difficult situations.
Secondly, by using correlation functions, the effect of unlearning can be formulated for
the systems which have no energy function. If we have a suitable Hebb rule for the system,
interactional changes by unlearning will be represented by a suitable correlation function in
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the same way as in section 2. The expansion of the correlation function in terms of some
sort of temperature will also be useful to study the effect of unlearning for such systems.

In our study, the concept of temperature plays a very important role. For ordinary
spin models, the system is assumed to be in contact with a heat reservoir and is naturally
described by a temperature. However, there is no such reservoir for neural networks. Then
we may ask what the temperature in our case means. In this respect, the relation between
RS unlearning and PM unlearning is an interesting subject. Note that RS unlearning can
also be formulated in terms of a correlation function made of spurious states if interactional
changes are very small, yet we have no method to estimate the correlation function except
a numerical one. Here we point out another point of view. That is, instead of addressing
the relation, we should rather think of some intrinsic mechanism which causes random
dynamics and generates dreams. Then the problem is to study to what extent this dynamics
is simulated by the usual thermodynamics or random shooting with relaxation. As far as
unlearning is concerned, details of the dynamics will not matter and any dynamics will
work well if undesirable states appear more frequently than the embedded patterns. In any
case, the problem is to evaluate the correlation function in terms of interactions and to see
how it affects the original interactions.

Finally, let us comment on the general aspect of our study. That is, we can regard
our study as a special case of paramagnetic evolution of complex systems. If paramagnetic
configurations reflect a low-energy energy landscape, we may naturally ask what happens to
the systems which have complex energy landscapes after being modified by paramagnetic
learning or unlearning. This question may sound rather academic, however, | think it
deserves to be studied. For one thing, this idea can be helpful in studying optimization
problems since learning about low energy states may make the search for them easier.
Also, if the initial models are random models, it will be possible to introduce models which
have correlated irregular interactions rather than uncorrelated random interactions. Thus it
will be quite interesting and meaningful to study random spin models using our formulation.
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Appendix A

In this appendix, we describe the high-temperature expansids;sf)? for the Hopfield
model. A related study is found in [11]. In the largelimit, the results should reduce to
those of the infinite range spin-glass model, which has a simple high-temperature expansion
as was discussed in [12]. In our case, the diagrams which contribute aftéraberage
look like a cross between the ferromagnetic model and the spin-glass model.

The correlation functior{S;S;) is defined by

(SiS;) =SS exp(—pH)/Z (A1)
(s}
whereZ = ), exp(—BH). The summatior_, is over spin configurations(s; ;) is
formally expanded in terms of tarftv;; ~ gJ;;, giving
(8;8;) = BJij + ,32 Z, Jix Jij + ,33 Z, JiJadij +---. (A2)

In the sum)_’, no two site indices are equal to each other, since a loop of edges should be
factorized to cancel the denominatdr This point is important in the Hopfield model as
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we will see in the following and appendix B. In general, a loop gives a fattafter the
&-average. More precisely, when all site indices are different, a loop; f gives

JiJw - Ji=PN" (A3)

where--- is the&-average and. is the number ot/;;’s.

Figure ALl. Some diagrams which appear i S;)2. The full lines represent terms which come
from one(S; ;) and the broken lines from oth¢s; S;). The first row shows the diagrams with
one loop. The second row shows those with two loops.

Now let us discusgsS;S;)?. Each term in(S;S;) can be expressed by a zig-zag line
which starts at sité, visits some different sites and ends at siteNo site is visited twice
or more in(S;S;), while in (S,»S,-)Z, two terms coming from differentsS; S;) can share some
sites other than or j (see figure Al). Let that number be denotedry Although these
sites impose restrictions over the site sum, they create loops, each of which gives a factor
P = aN. Among diagrams with fixeas, the diagrams which have the largest number of
loops are the ladder type, which have+ 1 loops. We can see this as follows. For
shared sites, each zig-zag line is divided intot+ 1 fragments. When the order of shared
sites is different between two zig-zag lines, there is at least one loop which costs more than
two fragments. This gives a number of loops smaller than- 1. When the site order is
the same, two fragments coming from differésitS;) can make a loop, givings+ 1 loops
for this diagram. Therefore the ladder diagrams give the leading contributiot$02.
Let us first calculate the contribution of a loop. Imagine a certain loop of lengtlh + I,
I1 from one(S;S;) andl, from another(s;S;). Using equation (A3), we see that this loop
yields g/ PN ! after thez-average. The summation over internal sites, the sites which are
not shared by twas;S;), yields a factorN'~2. This cancels the factaN~' above and
remains only as a power ¢f. Thus the sum ovel; and/, givesg/(1— B8) x 8/(1 — B).
Putting these together, we obtain

1 A= 1 ap?

N N@1-p)7?
as a contribution from the sum over diagrams of a single loop. Finally the summation over
the number of loops and shared sites gives

1 A
CN1-A
This result is also obtained as a by-product of the signal-to-noise analysis &f thedel,
which is discussed in section 4. Note that, when— oo with fixed J2 = ap?, this
expression reduces to the paramagnetic correlation function of the infinite-range spin-glass
model with interactional variancé/~/N. On the other hand, whem — 0, equation (A5)

reduces tod /N, which is just the square of the ferromagnetic correlation function multiplied
by the number of patterns.

(A4)

(8;8;)? (A5)
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Appendix B

In this appendix, we derive the relation

(ZU Jz@)(ZN Jl(lp)) = ppa”/N (B1)

and

(CX6) (S ife}) = o 2

J#i J'#
where
]1(/p) = -]llltc.]]:l e ]zn] (83)
and j/, = £/'¢/'/N. These formulae are valid in th€ — oo limit.
Let us first concentrate on (B1). In the sum”, site indices are all different and

neighbouring pattern indices are not equal to each other. The restriction on site indices
implies that a certain site appears only oncg’ﬁﬁ, if it does at all. Further, on such a site,

there are twot which have different pattern indices. Therefore tWf8 in (B1) should

have the same site indices to give a non-zero contribution except that the order of them
can be different. For this reason, the casg p’ gives zero on the right-hand side. In the

P, N — oo limit, the pairing of two terms of the same site order gives the leading term
NP~1pr x (1/N)% after the site and pattern sum, where we uggf)? = 1/N2. This

is the right-hand side of (B1). Thus we should show that the products of two terms with
different site order do not give leading contributions.

In the product of different site order terms, the number of free site indices and the number
of jl.’;., which give factorsN and I/ N, respectively, are the same as above. However, the
number of free pattern indices becomes smaller. Let us take a closer look at this point. To
evaluate the number of free pattern indices, we should count the number of loops made of
j,.‘;. Note that(j};)? is the simplest loop of length two, which gives a fac®rafter the
w-sum. In the product of different site orders, there are loops longer than two. These loops
should have lines coming from differept”’ alternately since neighbouring in j” do not
have the same pattern index. A loop of this type costs four or more thanfjou‘fherefore
it gives non-leading terms in (B1). In other words, there appear additional restrictions on
the pattern indices in this case. We should note that the situation is essentially parallel to
the evaluation ofS; S;)2

Let us turn to (B2). Whery = j’, we can follow the argument presented for (B1) and
obtain the leading contributions, which make the right-hand side of (B2) aftej ghem.
When j # j', a factor¢} restricts the sum over pattern indicesii j?” since there should
bes1 somewhere |nJl(”) The same is true fog/%. The rest of the pattern indices should
be paired betweeri?” and j?’ to give a non-zero contribution. Thus the number of free

pattern indices is reduced by at least one. Therefore the jcas¢’ does not give leading
contributions to the right-hand side.
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