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Abstract. We propose and study unlearning in the paramagnetic phase of neural network
models. More precisely, we introduce the evolution equation of synaptic interactions given
by J d+1

ij = J d
ij − ε̄Sd

i Sd
j , where Sd

i , the dth dream, is generated by the paramagnetic

dynamics of theJ d model. Whenε̄ is much smaller than〈SiSj 〉2
Jd , we obtain the interactions

J
d+d0
ij = J d

ij − ε〈SiSj 〉Jd after d0 dreams, whered0 is a large integer,ε is ε̄d0 which should

be smaller than 1 and〈SiSj 〉Jd is the paramagnetic correlation function of theJ d model. The
introduction of the paramagnetic correlation functions opens the possibilities for some analytic
studies of unlearning. In this paper, we present two studies about the second equation by using
the high-temperature expansion. In the first study, theJ d model is assumed to be the Hopfield
model and the signal-to-noise ratior for the J d+d0 model, which is called theJ ′ model, is
studied. r is evaluated to the infinite order ofβ = T −1 in the thermodynamic limit, giving
affirmative results for paramagnetic unlearning. When the interactional changes are large, the
J ′ model becomes a poor approximation for the resulting models. In the second study, the
above equation is regarded as the iterative equation for everyd0 dreams. An expansion ratēµ
for J d

ij is introduced to control the amplitude of interactions for the large interactional changes.
We find that, to the second order ofβ, the fixed-point interaction is given by the pseudo-
inverse type forµ̄ > βε̄. For both studies, some results of numerical simulations are presented,
which are consistent with the analytic results. Our analytic and numerical studies imply that
pattern correlations hidden in the correlation function appear naturally in interactions through
paramagnetic unlearning.

1. Introduction

During this decade, many interesting ideas about neural networks have been developed
from the point of view of statistical physics. In particular, the studies of associative memory
provide us with many interesting insights into the cooperative phenomena of neural networks
[1, 2]. Among many neural network models, the Hopfield model is important, since it is
simple enough to allow analytic studies and yet it has many interesting aspects as an
associative memory.

The Hopfield model is an infinite-range spin model which has interactions prescribed by
the Hebb rule. In the Hebb rule, learning is implemented by enforcing synaptic interactions
between neurons. That is, when a pattern to be learnt has a datumξi on neuroni and ξj
on neuronj , the change of the interaction between neuroni and neuronj is assumed to be
proportional toξiξj . We should note that this rule is local in the sense that an interactional
change between two certain neurons is determined only by the temporary data on these two
neurons.
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The ability of an associative memory is mainly characterized by the capacity, the number
of patterns the model can memorize, and the quality of retrieval. In this respect, the Hopfield
model has several aspects which remain to be improved, i.e. it has a small capacity and
many spurious states. These two aspects may be closely connected since many spurious
states occupy a large proportion of the configuration space.

Several authors have suggested methods to improve the capacity and quality of retrieval.
Among them, the pseudo-inverse model shows perfect retrieval and a remarkable increase
of the capacity [3, 4]. However, this model does not satisfy the locality of learning since
interactions among neurons are characterized by the pattern correlation matrix. Thus the
pseudo-inverse model has been studied mainly for technological interests. If we can find a
local evolution rule which brings the Hopfield model into the pseudo-inverse model, it will
also become relevant to biological studies of neural networks.

Several years ago, some biologists suggested a very interesting idea which improves
the properties of a neural network, that is, unlearning of spurious states [5, 6]. The main
idea of unlearning is to destabilize spurious states by the anti-Hebb rule. In this method,
a spurious state is found by random shooting and zero-temperature spin dynamics. Some
simulations shows that the improvement is really observed by iterations of unlearning [7, 8].
A biological assumption is that this procedure corresponds to rapid eye movement (REM)
sleep found widely among mammals and spurious states being unlearned are dreams one
sees during sleep. We can find many illuminating observations about REM sleep and neural
networks in [5].

In this paper, we propose and study another version of unlearning, which seems more
natural from the point of view of statistical physics. That is, we assume that dreams
to be unlearned are spin configurations generated by the paramagnetic dynamics of the
neural network model. This idea is inspired by learning with thermal noise suggested in
[9]. Statistical mechanics tells us that the configurations generated by the paramagnetic
dynamics obey the Maxwell–Boltzmann distribution. Thus spurious states or configurations
close to them appear very frequently in such dynamics if they have lower energy than the
embedded patterns. Therefore we expect that an effect similar to unlearning by random
shooting also appears in our version. In addition, we can study the resulting models by
using the standard methods of statistical mechanics.

In section 2, we introduce unlearning with a finite temperature and describe the
formulation in terms of paramagnetic correlation functions. In section 3, the signal-to-
noise analysis of the approximated model, which we call theJ ′ mode, is presented. To
do this study, we need some results about the high-temperature expansion of the Hopfield
correlation function, which is discussed in appendix A. Some numerical results about the
J ′ model are presented in section 4. In section 5, we discuss some generalizations of the
iterative equation especially to treat large changes of interactions. Section 6 is devoted to
some discussions.

2. Unlearning in the paramagnetic phase

In this section, we define unlearning at a finite temperature and describe the formulation in
terms of the correlation function. Formally, unlearning at a finite temperature is achieved
by replacing spurious states to be unlearned with configurations generated by the finite-
temperature dynamics. We will show that, when the number of dreams is large enough, and
interactional changes are small enough, total interactional changes can be described by the
paramagnetic correlation function of the initial model. These conditions impose an upper
bound on the interactional change of each unlearning step.
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Let us first introduce some notations and describe the basic properties of the Hopfield
model. P memorized patterns are given by random quenched variablesξ

µ

i = ±1, where
µ = 1, 2, . . . , P is a pattern index andi = 1, 2, . . . , N is a site index. A site in this paper
means a neuron. The Hopfield model is described by the Hamiltonian

H = − 1
2

∑
i 6=j

JijSiSj (1)

where interactionsJij are defined by

Jij = 1

N

∑
µ

ξ
µ

i ξ
µ

j . (2)

Si are Ising spin variables which take±1. In this paper, we concentrate on uncorrelated
patterns, i.e.ξµ

i are quenched variables which take±1 with probability 1
2.

The ratioα = P/N is an important parameter which measures how much the system
is loaded with memories. For small enoughα, the model works as an associative memory,
that is, spin configurations close enough to a certain pattern evolve into that pattern under
suitable spin dynamics. The thermodynamic study of the model gave us some ideas about
states of the model [2]. It was shown that the phase diagram is rather complicated in
the space ofα and temperatureT . For α < αC ∼ 0.14, the model shows three phases:
paramagnetic, spin-glass and retrieval phase as the temperatureT decreases. The spin-glass
transition takes place atT = Tg ≡ 1 + √

α. The retrieval phase appears at much lower
T . When T is equal or close to zero, the model has spin-glass states, mixed states and
retrieval states. Mixed states are the mixture of embedded patterns. The spin-glass states
have the lowest energy forα > 0.05. For α > αC, there is no retrieval state even as a
metastable state, yet spin-glass states remain. We call mixed states and spin-glass states
together spurious states. The existence of too many spurious states is not desirable for an
associative memory. In addition, rather highTg implies that spin-glass states dominate the
configuration space.

The main idea of unlearning is to destabilize these states by the following procedure. Let
us take the system which is loaded with too many patterns to work as an associative memory.
ImagineSi are set to be random, that is, random shooting. WithT = 0 spin dynamics,
the random configuration evolves into a fixed pointηi which usually has little correlation
with embedded patterns. This means that the dynamics found a spurious state. This state
certainly corresponds to a dream if we assume that unlearning really happens during REM
sleep [8]. Thus, by this analogy, the configurations to be unlearned are also called a dream.
Then the system unlearns this dream by the replacement,J

′
ij = Jij −ε̄ηiηj , whereε̄ is a small

positive constant, which we call a unlearning parameter. Some simulations shows that the
improvement of the capacity and retrieval quality are really observed by the iteration of this
procedure ifε̄ is properly chosen. We should note here that random shooting corresponds to
T = ∞ spin dynamics if we assume that spins are always driven by some finite-temperature
dynamics. We call the scheme described here random shooting (RS) unlearning.

Our suggestion in this paper is that the dreams to be unlearned are simply generated
by the paramagnetic dynamics of the neural network. This assumption means thatηi

are replaced by spin configurationsSi generated by the high-temperature dynamics. Here
we do not discuss a biological origin of the paramagnetic dynamics. Ordinary stochastic
dynamics characterized by a temperature is sufficient for our argument. We call this scheme
paramagnetic (PM) unlearning.

Let us assume thatSi are generated by Monte Carlo (MC) dynamics [10] with a
temperatureT higher thanTg and we do unlearning ofSi for every MC step. Then thedth
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dream is given by

Sd
i =

{
Sd−1

i Prob 1− p(β1Hd(i))

−Sd−1
i Probp(β1Hd(i))

(3)

for all i asynchronously, and interactions are modified to

J d+1
ij = J d

ij − ε̄Sd
i Sd

j (4)

after a whole sweep of the system, whereβ = T −1 and 1Hd(i) is the change of thedth
model energy caused by the spin flip on sitei, which is given by 2Sd−1

i

∑
j 6=i J

d
ij S

d−1
j .

p(β1Hd(i)) is a probability of the flip of spini of the paramagnetic dynamics. We assume
thatd starts from 1,S0

i is a random initial configuration andJ 1
ij is the Hopfield interaction.

We takeT which is not close toTg. The explicit form ofp(x) depends on the type of MC
simulation. ε̄ should be proportional to 1/N . Below, we will give an argument about the
suitable value of̄ε for PM unlearning.

The evolution equation defines the sequence of models stochastically. Thedth model is
called theJ d model. To see what the resulting models will be, let us first study the relation
between theJ d model and theJ d+d0 model. This relation is formally given by

J
d+d0
ij = J d

ij − ε̄

d+d0−1∑
d ′=d

Sd ′
i Sd ′

j . (5)

Let us assume that the change of the interactions is small enough. This means thatε ≡ ε̄d0

is small enough. Then we can approximate the spin configurations in the sum to the ones
generated by theJ d model. Further, in thed0 → ∞ limit, the time average reduces to the
thermal average with the Maxwell–Boltzmann distribution of theJ d model. Therefore, to
the first order ofε, theJ d+d0 model has interactions given by

J
d+d0
ij = J d

ij − ε〈SiSj 〉J d (6)

where〈SiSj 〉J d is a paramagnetic correlation function of theJ d model, which is defined by

〈SiSj 〉J d =
∑
{S}

SiSj exp(−βHd)/Z (7)

whereZ = ∑
{S} exp(−βHd). The summation

∑
{S} is over spin configurations.Hd is the

energy function of theJ d model. SinceJ d
ij and 〈SiSj 〉J d are the same order of magnitude

in (6) (see below),ε should be some positive constant much smaller than 1.
In the above argument,̄ε is assumed to be small enough. The value of suitableε̄ is

important especially in numerical simulations. Let us clarify the condition thatε̄ is small
enough. The second term of (5) is a sum of±1 which are nearly random. In general, a
random sequence of±1 of d0 length has an average of order 1/

√
d0. This value should

be much smaller than〈SiSj 〉J d to have correlation effects in the sum. Then we get the
condition 1/d0 � (〈SiSj 〉J d )2, where· · · is theξ average of· · · . Therefore we obtain

ε̄ � (〈SiSj 〉J d )2 (8)

where ε was set to 1 since it is irrelevant in this inequality. The right-hand side can
be estimated by the high-temperature expansion. If we take the first-order term ofβ,

(〈SiSj 〉J d )2 is given byβ2(J d
ij )

2 ∼ β2J 2
0 /N , whereJ0 is of order 1. It is interesting that the

value suggested for RS unlearning [8] satisfies the condition with a moderateβ, although
their scheme is different from ours.

We study two versions of equation (6) in this paper. The first is that, whend is set to
be 1, equation (6) is regarded as a definition of the model which appears afterd0 dreams
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starting from the Hopfield model. This model is called theJ ′ model. In this case, we can
study the correlation function explicitly since it is defined by the Hopfield model. Sections 3
and 4 are devoted to the study of theJ ′ model. Whenε becomes large, theJ ′ model will
be a poor approximation of the resulting models. In the second study, equation (6) is
regarded as an iterative equation for everyd0 dreams. In this method, the large change of
interactions can be treated. However, whenJ d

ij changes greatly, we should be careful about
the magnitude ofJ d

ij since our arguments are based upon the paramagnetic phase of neural
networks. In addition to this, the inequality (8) can be violated whenJ d

ij become too small.
In section 5, to avoid this problem, we introduce the expansion rate forJ d

ij to control their
amplitudes and study the generalized iterative equation which shows better performance.

Our discussion so far is rather formal. Everything is hidden in the paramagnetic
correlation function. In the next section, we discuss the signal-to-noise analysis of the
J ′ model by using the high-temperature expansion of〈SiSj 〉J .

3. Signal-to-noise analysis of theJ ′ model

In this section, we discuss the signal-to-noise analysis of theJ ′ model defined by the
interactions

J ′
ij = Jij − ε〈SiSj 〉 (9)

where〈SiSj 〉 is the paramagnetic correlation function of the Hopfield model. This model
is a special case of (6). The main concern in this section is whether the second term in (9)
really improves the signal-to-noise ratio of the Hopfield model or not.

To begin with, we describe the high-temperature expansion of〈SiSj 〉. Following the
common procedure, it can be expanded in terms of tanhβJij ∼ βJij , where the higher-order
terms ofβJij are dropped sinceJij ∼ 1/

√
N . The result is given formally by

〈SiSj 〉 = βJij + β2
∑′

JikJkj + β3
∑′

JikJklJlj + · · · . (10)

Each term is represented by a diagram which has vertices for sites and edges for interactions.
In the sum

∑′, no two indices are equal to each other since a loop of edges should be
factorized to cancel the denominatorZ. This point is important for the Hopfield model
since the number of loops is relevant forξ averages (see appendix A). The spin-glass
transition temperature is given by the point at which〈SiSj 〉2 diverges. In appendix A, we
describe the evaluation using diagrammatic representations. The result is

〈SiSj 〉2 = 1

N

A

1 − A
(11)

where

A ≡ αβ2

(1 − β)2
. (12)

〈SiSj 〉2 diverges atT = 1±√
α. The higher temperature should be adopted as the transition

point. In this way, we obtainTg = 1+ √
α, which is the same result as the replica method.

At the end of this section, we obtain another derivation of (11) as a by-product of the
signal-to-noise analysis.
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Now we discuss the signal-to-noise analysis of theJ ′ model. Let us study the stability
of pattern 1. The local field on sitei for this configuration is given by

hi =
∑
j 6=i

J ′
ij ξ

1
j

=
∑
j 6=i

Jij ξ
1
j − ε

∑
j 6=i

〈SiSj 〉ξ1
j . (13)

If ξ1
i × hi is positive for all or almost all sites, pattern 1 is expected to be stable. To see

this, hi is decomposed into a signal parths which is proportional toξ1
i and a noise parthn

which is not correlated withξ1
i . The first term in (13), i.e. the local field of the Hopfield

model, is decomposed into∑
j 6=i

Jij ξ
1
j = ξ1

i +
∑

j 6=i,µ6=1

j
µ

ij ξ
1
j (14)

wherej
µ

ij = ξ
µ

i ξ
µ

j /N . The first term is a signal and the second term is a noise, which we
call a Hopfield noise. The signal-to-noise ratio|hn/hs| in this case becomes

√
α in the

N → ∞ limit, which is small for smallα. Thus the local fields are parallel withξ1
i for

almost all sites for small enoughα. For the Hopfield model, it was shown by the replica
method that the upper limit of the signal-to-noise ratio which allows the retrieval phase is√

αC ∼ 0.37. We take this value as a reference for theJ ′ model for the possible retrieval
phase.

Let us now study the second term of (13). According to the high-temperature expansion,
the coefficient ofβn is given by∑

j 6=i

∑′
JikJkl · · · Jlj ξ

1
j (15)

where each term is a product ofn Js. In this expression, there are signal terms, Hopfield
noise terms and other kinds of noise terms which are absent in the Hopfield model. To be
specific, let us concentrate on the second-order terms, which become∑

j 6=i

∑
k 6=i,j

JikJkj ξ
1
j =

∑
j 6=i

∑
k 6=i,j

∑
µ

∑
ν

j
µ

ikj
ν
kj ξ

1
j (16)

after puttingJkl = ∑
µ j

µ

kl . Note here that the site indices are all different, while the pattern
indices are free from any restriction. If we neglect the restriction on the site indices, the
correlation matrixCµν ≡ ∑

k ξ
µ

k ξ ν
k /N appears after thek sum. This fact was found in [9]

in a different context. Thus it is natural to expect that this term changes the signal-to-noise
ratio of the Hopfield model.

To find the signal part and the noise part of (16), we should group the terms in (16)
according to the correlation under anξ -average. The number of different pattern and site
indices is a good guide for this purpose. Let us concentrate on the pattern indices. The
formulae

∑
k j a

ikj
a
kl = ja

il and
∑

k j a
ikξ

a
k = ξa

i , which are valid forN → ∞, are convenient in
the following evaluation. The contribution to the signal part is given by the termµ = ν = 1,
giving ξ1

i , whereas the noise part is decomposed into several uncorrelated elements. The
Hopfield noise comes fromµ = ν 6= 1 andµ 6= ν = 1, which make 2× ∑

j 6=i,µ6=1 j
µ

ij ξ
1
j .

We should note that each contribution corresponds to a position at which pattern indices
switch when we follow the expression (16) from one end to another. There are other types
of noise, the term withµ 6= ν 6= 1, whereµ can be 1. In general, we can also group the
higher-order terms according to the number of positions the pattern indices switch.
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These observations imply that after puttingJkl = ∑
µ j

µ

kl in equation (15), terms are
categorized according to the number of positions where the sequence of pattern indices
changes. In this way we reach the expression for thenth order term∑

j 6=i

∑′
JikJkl · · · Jzjξ

1
j = ξ1

i +
n∑

p=1

(
n

p

) ∑
j 6=i

∑′′
j

(p)

ij ξ1
j (17)

where we have introduced the abbreviationj
(p)

ij = j
µ

ikj
ν
kl · · · jη

zj . The indices other thani
or j are dropped inj (p)

ij since they always appear in the sum
∑′′. The sum

∑′′ means
that all site indices are different and two neighbouring pattern indices are also different. As
we discuss in appendix B,

∑′′
j

(p)

ij ξ1
j of different p are not correlated to each other in the

N → ∞ limit. In this sense, they work like a set of basis functions onξ -space. Using this
expression, we obtain∑

j 6=i

〈SiSj 〉ξj =
( ∞∑

n=1

βn

)
ξ1
i +

∞∑
p=1

( ∞∑
n=p

(
n

p

)
βn

) ∑
j 6=i

∑′′
j

(p)

ij ξ1
j

= β

1 − β
ξ1
i +

∞∑
p=1

βp

(1 − β)p+1

∑
j 6=i

∑′′
j

(p)

ij ξ1
j . (18)

In this expression, the signal term has a coefficientβ/(1 − β), while the Hopfield noise
term, the term withp = 1, has a coefficientβ/(1 − β)2. That is, their ratio 1/(1 − β) is
different from 1. This is the reason why the correlation function changes the signal-to-noise
ratio of the Hopfield model. The amplitudes of other types of noise are evaluated by using
the formula ( ∑

j 6=i

∑′′
j

(p)

ij ξ1
j

)( ∑
j ′ 6=i

∑′′
j

(p′)
ij ′ ξ1

j ′

)
= δpp′αp (19)

which is valid in theN → ∞ limit, whereδpp′ is a Kronecker delta. See appendix B for a
derivation. Using this formula, we finally obtain the expression

hi =
∑
j 6=i

J ′
ij ξ

1
j = hsξ

1
i + hn (20)

where

hs = 1 − εβ

1 − β
(21)

|hn| ∼
√(

1 − εβ

(1 − β)2

)2

α + ε2

(1 − β)2

A2

1 − A
. (22)

The ratior ≡ |hn/hs| has a minimum at some positiveε since|hn| decreases more rapidly
than hs as ε increases from zero. The study of the minimum ofr is straightforward. We
discuss this point in the next section.

To conclude this section, we sketch another derivation of〈SiSj 〉2. By following the
same procedure as above,〈SiSj 〉 is written in the form

〈SiSj 〉 =
∞∑

p=1

βp

(1 − β)p

∑′′
j

(p)

ij . (23)

Using the relation(
∑′′

j
(p)

ij )(
∑′′

j
(p′)
ij ) = δpp′αp/N , which is derived in appendix B, we

obtain the same result as in appendix A.
In the next section, we discuss the behaviour ofr and compare it with the results of

computer simulations.
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4. Numerical study of theJ ′ model

In this section, we study the behaviour ofr and present some numerical results of simulations
of the J ′ model. Let us first study the value ofε which minimizesr. By differentiatingr2

with respect toε and solving the resulting equation, we find thatr takes the minimum

rm = A
√

α + (1 − β)2(1 − A)

β2 + A − β2A
(24)

at

εm = (1 − β)2(1 − A)

1 − (1 − β)(1 − A)
. (25)

rm decreases asβ decreases and tends to the smallest valueα/
√

1 + α when β → 0. In
this limit, εm tends to(1/β) − (2 + α) and the interactions of theJ ′ model reduce to

J ij = β

{
(2 + α)Jij −

∑
k 6=i,j

JikJkj

}
. (26)

The reason that a smallβ gives a smallrm is that the factorA2/(1 − A) of the second
term in |hn|2 becomes rather small for smallβ. If we adopt

√
αC ∼ 0.37 as a critical

value of r, the best critical capacityα′
C of the J ′ model is determined by the equation

α/
√

1 + α = √
αC. This yieldsα′

C ∼ 0.42, which is about three times the critical capacity
of the Hopfield model. In the computer simulations, however, too smallβ is not desirable
since〈SiSj 〉 becomes very small and more than(〈SiSj 〉2)−1 ∼ N/A ∼ N/(αβ2) MC steps
are required to have a correlation effect as discussed in section 2.

Two kinds of simulation are presented here. In the first case, theJ ′ model is explicitly
made by evaluating〈SiSj 〉 by MC simulations. In the second case, the iterative equation
for J d

ij suggested in section 2 is simulated directly. For spin dynamics, the Metropolis
function,p(x) = 1 for x 6 0 andp(x) = exp(−x) for x > 0, was used. In both cases, we
want to know whether the embedded patterns are stable or not. This stability is a necessary
condition for associative memory. Thusmµ = ∑

ξ
µ

i σ
µ

i /N , whereσ
µ

i is obtained byT = 0
spin dynamics starting fromξµ

i , is evaluated for every some MC steps. The average ofmµ

over patterns and some samples is denoted bym.
Let us study the first case. To be specific, we mainly discuss the simulations for

(α, β) = (0.2, 0.5). These values giveεm = 1
3 and rm = √

0.1 ∼ 0.32, which is smaller
than

√
αC ∼ 0.37. The small value ofεm is desirable if we want theJ ′ model to be

the approximation of the original iterative equation. System sizeN is 200. For these
parameters,N/A is of order 103. The MC stepsd0 should be much larger than this value.
To make theJ ′ model, 〈SiSj 〉 were numerically obtained by the Monte Carlo simulation
with mainly 105 MC steps. We found that, for these values of parameters,〈SiSj 〉2 takes a
value close to (11). After obtaining〈SiSj 〉, the interactionJ ′

ij = Jij − ε〈SiSj 〉 is assigned
to the Hamiltonian. Figure 1 shows theε dependence ofm for (α, β) = (0.2, 0.5) with
the signal-to-noise ratior. Figure 2 shows the results for(0.3, 0.3) with various MC steps.
The maximum ofm clearly tends toεm as the number of MC steps increases. Note that
N/A ∼ 104 for this (α, β), which is the lower bound of MC steps to have correlation effects
in the sum (5). This explains the improvement from 104 to 105 MC steps. We suppose that
some amount of random noise is induced in〈SiSj 〉 by the numerical evaluation with finite
d0. For example, we will get a maximum ofm nearε ∼ 0 if the MC steps are too small
to give the thermal average. This explains the reason why the maxima ofm are always
placed atε smaller thanεm and they shift toεm as the number of MC steps increases in
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Figure 1. The overlapm evaluated for theJ ′ model with (α, β) = (0.2, 0.5) and N = 200.
The signal-to-noise ratior = |hn/hs| is also depicted by a broken curve.r takes the minimum
rm = √

0.1 ∼ 0.32 atεm = 1
3 for these parameters. The averagesm and their sample fluctuations,

which are denoted by error bars, are evaluated for 10 samples.

Figure 2. The overlapm evaluated for theJ ′ model with (α, β) = (0.3, 0.3) and the signal-
to-noise ratior = |hn/hs| which is depicted by a dotted curve.N = 200. Each curve ofm
corresponds to a different number of MC steps to evaluate〈SiSj 〉, which are 104, 105 (average of
10 samples), and 106 (one sample) MC steps from the bottom.r takes the minimumrm ∼ 0.34
at εm ∼ 1.37.

figure 2. Except for this aspect, the numerical results seem to be in good agreement with
the signal-to-noise ratior.
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Figure 3. The evolution ofm evaluated by the iterative equation of theJ d model for two
samples.N = 200. The full curve shows the samem as in figure 1, which are connected by
lines to guide the eye. In the case of theJ d model, the horizontal axis meanst ≡ ε̄d, where
ε̄ = 10−5.

In the second case, the original iterative equation (4) was simulated for(α, β) =
(0.2, 0.5). We adoptedε̄ = 10−5, which is about the inverse of the MC steps of the
first case. The numerical results form are presented in figure 3 with the result of the first
case. Note that the horizontal axis for the second case meansε ≡ ε̄d. For ε smaller than
0.4, the two simulations give a similar behaviour ofm as expected. The case of(0.3, 0.3)

was also studied in the same way. In this case,m also keeps increasing but shows poor
results around the minimum ofr sinceεm is rather large.

Whenα is not so small or when a better retrieval property is demanded, we should study
a rather large change of interactions. This requires a lot more MC steps for the iterative
equation. In the next section, we will discuss this situation.

5. Study for large interactional changes

This section is devoted to the study of large interactional changes caused by PM unlearning.
When we have to deal with large interactional changes, the amplitude of interactions
becomes an important problem. That is, if it gets smaller and smaller as unlearning proceeds,
the upper bound on̄ε in section 2 will be violated since(〈SiSj 〉J d )2 ∼ β2(J d

ij )
2 becomes

very small. On the other hand, when interactions get larger and larger, our scheme of
unlearning breaks down since the spin configuration will be trapped in a certain valley of
the energy function. Here we suggest introducing the expansion rateµ̄ for interactions to
control their amplitude. Then the iterative equation which is studied in this section is given
by

J d+1
ij = (1 + µ̄)J d

ij − ε̄Sd
i Sd

j . (27)
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Sd
i obey the same dynamics as in section 2. We expect that the expansion rateµ̄ will

balance the contribution from the second terms.

5.1. Study of the iterative equation

Let us discuss theJ d+d0 model defined by (27) using the formulation introduced in section 2.
The situation here is a bit different sinceµ̄ induces terms like(1 + µ̄)d

′−dSd ′
i Sd ′

j . However,
the factors(1 + µ̄)d

′−d − 1 ∼ µ̄(d ′ − d) only give next-order corrections to the correlation
function. Thus we can set̄µ = 0 in the sum over paramagnetic configurations. Therefore
in the large-d0 limit with a small fixed1t ≡ ε̄d0, we obtain

Jij (t + 1t) = (1 + θ1t)Jij (t) − 1t〈SiSj 〉J (t) (28)

to the first order of1t , where we have introduced the time variablet ≡ ε̄d and the ratio
θ ≡ µ/ε.

Let us study this equation by high-temperature expansion. In this paper, to make the
arguments as simple as possible, we restrict ourselves to the second order ofβ, which gives
the first non-trivial effect. The studies including higher-order terms will be done in a similar
way. To the second order ofβ, we obtain

Jij (t + 1t) = (1 + βδ1t)Jij (t) − 1tβ2
∑
k 6=i,j

Jik(t)Jkj (t) (29)

whereδ ≡ (θ − β)/β. The fixed point is given by settingJij (t + 1t) = Jij (t) ≡ J F
ij . If the

two terms withk = i, j are added and subtracted in the sum and assumingJ F
ii = J F

jj , we
find that one solution for the fixed point is the pseudo-inverse-type interactionJ F

ij = aTij ,
where

Tij = 1

N

∑
µν

ξ
µ

i C−1µνξν
j (30)

and Cµν is a pattern correlation matrix. The amplitudea is determined by (29), which
becomes

δ = (1 − 2α)aβ. (31)

This yields

aβ = δ

1 − 2α
(32)

where we have usedJ F
ii ∼ aα. This solution is valid whenaβ is positive and small enough.

The singularity atα = 0.5 is an artefact of the second-order approximation. Higher-order
terms ofβ should be taken into account whenα is around 0.5. Even with higher-order terms,
we suppose that the solution of the fixed-point equation will also be given by (30), since,
in every order of the expansion in terms ofβJ F

ij , eachC−1 is always associated with the
matrix C. The questions are how the restrictions on site indices affect this simple structure
and whethera can be positive or not. In this paper, we restrict ourselves toα < 0.5 and
not close to 0.5.

Let us discuss the solution of (29). As was done for the fixed point equation, it is
convenient to introduce diagonal interactionsJii(t) in the site sum. Thet dependence of
Jii(t) will be specified later. Thusβ21t(Jii(t) + Jjj (t))Jij (t) is added in the second term
and it is subtracted from the first term. We further assumeJii(t) to beJd for all i, which
is the site andξ average ofJii(t). Then we obtain

Jij (t + 1t) = (1 + p1t)Jij (t) − q1t
∑

k

Jik(t)Jkj (t) (33)
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wherep = βδ + 2β2Jd andq = β2. Now it is natural to defineJii(t) by the elements with
i = j in (33). Then equation (33) can be regarded as a matrix differential equation for the
interaction matrixJ (t). Note thatJii(0) should be

∑
µ ξ

µ

i ξ
µ

i /N = α, the fictitious diagonal
elements of the Hopfield interactions.

If we neglectp, the solution of (33) is given by the model discussed in [9]. Although
the t dependence ofp will not be so strong, we can take it into account by assuming the
same form as in [9] witht-dependent parameters. Thus we assume

Jij (t) = s
∑

k

Jik

(
1

1 + rJ

)
kj

= s

N

∑
µν

ξ
µ

i

(
1

1 + rC

)µν

ξν
j (34)

where J is an initial interaction matrix, whose elements are the Hopfield interactions.
s and r are functions oft . From the first to second line, we have used the relation∑

k JikJkj = ξ
µ

i Cµνξν
j /N etc. AlthoughJd defined by (34) is a complicated function

of s andr, we can use the approximated forms in the limiting situations. That is,Jd → sα

for r → 0 andJd → αs/r for r → ∞. The differential equations fors andr are obtained
by replacings → s + 1s andr → r + 1r in (34) and comparing it with (33). In this way,
we obtain

ds

dt
= p(s, r)s

dr

dt
= qs (35)

wherep(s, r) ≡ p. The initial conditions ares = 1 andr = 0, which give the Hopfield
model. If p(s, r) does not depend ont , the solutions of (35) have a simple exponential
form. The corresponding solution (34) can be obtained from (33) directly.

The solution of (35) is explicitly obtained for smallt or larget . For smallt , we obtain
s = 1 + bt + · · · and r = β2t + · · ·, whereb = βδ + 2αβ2. For larget , we expect that
r → ∞ and thats/r becomes some constant for positiveδ. Actually, usingJd → αs/r

and this assumption, we find

s = c exp(β2at) r = c
1

a
exp(β2at) (36)

wherea is defined by (32) andc is a positive constant. This solution is valid whena > 0,
which imposes the conditionδ > 0. These results imply thatJij (t) tend to the pseudo-
inverse interactions fort � t0 ≡ (β2a)−1 for δ > 0. Note the factor(βδ)−1 in t0, which
controls the MC steps when the crossover takes place. This aspect is relevant in numerical
simulations even whenβ is not so small. Forδ < 0, the limiting forms (36) are unphysical.
To discuss the solution for intermediatet , we need to knowJd for moderater. As we will
see, the numerical simulations forδ < 0 imply that the amplitude of interactions becomes
so small that the condition on̄ε will be violated eventually. Our arguments are no longer
vaild in such a situation.

Let us give some comments about the results. First, actually,Jii(t) depend oni for
finite systems, especially for smallα. This site dependence can create some noise in the
iterative equation. Second, the arguments so far are based on the limitε̄ → 0. However,
ε̄ and MC stepd are finite in computer simulations. As discussed in section 4, unlearning
terms will induce some random noise in simulations with finiteε̄. These two kinds of noise
can cause a large deviation from the above results after many iterations. We also note that,
when the amplitude of the fixed-point model is too small, the conditionε̄ � (〈SiSj 〉J (t))2

can be violated before reaching the fixed point. Even with these points, we think that the
studies in this section are a good guide to understanding the results of numerical simulations.
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5.2. Numerical study of the iterative equation

Now let us turn to the results of computer simulations for the evolution equation (27),
where spin variables are driven by paramagnetic MC dynamics. To see what properties
the running models have, we have studied the overlapm, the amplitude of interactions√

N |J (t)|, signal-to-noise ratiorh, and QJ which is the overlap betweenJij (t) and Tij .
The latter two quantities are defined by

rh =
√

(1h2)a/ha

QJ = J (t) • T/|J (t)||T |
whereX • Y ≡ ∑

i 6=j XijYij /N(N − 1) and |X| ≡ √
X • X. ha is the average of absolute

values of the local fields, which is defined by (13), and
√

(1h2)a is its variance. Both
averages are evaluated over all sites and embedded patterns.rh is zero for the pseudo-
inverse model and

√
α for the Hopfield model with smallα. By using|T | = √

α − α2/
√

N ,
|J | = √

α/
√

N andT • J = (α − α2)/N , we see thatQJ is
√

1 − α when theJ (t) model
is the Hopfield model. At the fixed point,

√
N |J (t)| is given by

√
N |J F| =

√
α − α2

(1 − 2α)β
δ (37)

to the second order ofβ, while it is
√

α for the Hopfield model.
In figure 4(a)–(d), the time developments of these quantities are presented for(α, β) =

(0.2, 0.5) for every 1000 MC steps.N and ε̄ are 100 and 10−5, respectively.δ are−0.2,
0.2 and 0.4. When(α, β) = (0.2, 0.5), we havet0 = 6/(5δ), which becomes 3× 105 MC
steps forε̄ = 10−5 andδ = 0.4. In all the simulations, we have studied up to 5× 105 MC
steps. The results of the simulation for(α, β) = (0.6, 0.5) with δ = 0.4 are also depicted
for comparison. We have studied several samples in the same manner and found that the
sample fluctuations are not so large except for the details ofm, which are shown in figure 3.
Let us first look through the results ofα = 0.2.

In figure 4(a) and (b), the time developments ofm andrh are depicted. The behaviour
of m can be understood in terms of that ofrh. In general, asrh decreases,m increases
and becomes close to 1 whenrh ∼ √

αC. For α = 0.2, m becomes 1 after about 105 MC
steps and stay there except for the case ofδ = −0.2, for which m starts to decrease at
about 4× 105 MC steps. This decrease is so small thatm barely gets separated from the
m = 1 line in figure 4(a). On the other hand, in figure 4(b), the difference between various
δ is rather clear.rh for δ = −0.2 starts to increase at 2.5 × 105 MC steps, while there
are no such increases ofrh for positive δ. At a given MC step,rh is smaller for larger
δ. This implies that the improvement of the models is quicker for largerδ as discussed in
section 5.1, yet they do not reduce to zero in the studied MC steps. The increase ofrh

for negativeδ means that unlearning deteriorates the model as an associative memory. For
µ̄ = 0, which corresponds toδ = −1.0, we found that this happens in earlier MC steps,
although the model is improved in the beginning. As we have discussed in section 5.1,
the evolution with negativeδ does not seem to have a fixed-point model at least in our
framework.

Figure 4(c) shows the evolution of
√

N |J (t)| for the same parameters. Forδ = −0.2,√
N |J (t)| keeps decreasing, while it tends to some constant values forδ = 0.2 and 0.4. To

the second order ofβ, the theoretical values for the fixed-point model are given by (37),
which reduces to4

3δ in this case. They are marked by4 for each positiveδ on the right
vertical axis. Note

√
N |J (t = 5)| for δ = −0.2 is about half of

√
N |J (t = 0)|. This means

that (〈SiSj 〉J (t))2 becomes about one-fourth of the original value. Thus the condition (8)
tends to be violated.
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Figure 4. The evolutions of (a) m, (b) rh, (c)
√

N |J (t)| and (d) QJ obtained by the iterative
equation (27). The parameters are(α, β) = (0.2, 0.5) with δ = −0.2 (short-broken curves),
0.2 (full curves) and 0.4 (long-broken curves). We took the same sample forδ = −0.2 and
0.4. In each graph, the evolutions for(α, β) = (0.6, 0.5) with δ = 0.4 are also depicted by
dotted curves for comparison. All simulations were done withε̄ = 10−5 andN = 100. On the
horizontal axist ≡ ε̄d. (a) The evolution ofm. For α = 0.2, it becomes very close to 1 in
less than 1× 105 MC steps, while it takes about 4× 105 MC steps to become close to 1 for
α = 0.6. (b) The evolution ofrh. It is clearly shown how the models are improved. Note the
increase ofrh for δ = −0.2. (c) The evolution of

√
N |J (t)|. For α = 0.2 and positiveδ, we

have the approximated values of the fixed-point model,4
3δ, given by (37). They are marked by

4 for eachδ on the right vertical axis. (d) The evolution ofQJ . For (α, β) = (0.2, 0.5), it first
increases then starts to decrease in the middle of the simulation. For(α, β) = (0.6, 0.5) with
δ = 0.4, it keeps increasing during the MC steps studied.
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Figure 4. (Continued)

Figure 4(a)–(c) imply that the critical point of the evolution should be betweenδ = −0.2
and 0.2. Although the observed transition is not so sharp, this supports thatε̄β is a critical
value of µ̄. Note thatβ in this expression appears as a result of the high-temperature
expansion of the correlation function. To affirm thisβ dependence, we have studied the
time developments forβ = 0.3 with variousδ and obtained similarδ dependence of the
evolutions.

Figure 4(d) shows the behaviour ofQJ . It directly measures how similar the evolving
models are to the pseudo-inverse model. Forα = 0.2, QJ start at

√
0.8 ∼ 0.89 and increases

to about 0.96, but then it keeps decreasing in the last half of the MC steps. Among the
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studiedδ, δ = 0.4 achieves the largest value. Although the decrease ofQJ seems different
from what we have studied in section 5.1, we can think of several reasons for this. In
section 5.1, we have discussed two sources which create noise in the evolution equation.
These noises can cause large effects near the fixed point where the drive by the evolution
equation becomes very small. In addition,δ = 0.2 seems rather close to the critical point
of the evolution. This can be another reason for noise. Actually, maximalQJ becomes
closer to 1 asδ increases in figure 4(d).

Although we do not have any analytic results for largeα, the numerical simulations
can be done for arbitraryα. In figure 4(a)–(d), the results for(α, β) = (0.6, 0.5) are
also depicted by dotted curves with the sameN and ε̄. δ was assumed to be 0.4, which
shows a faster improvement than smallerδ. From figure 4(a) and (b), we see thatrh keep
decreasing andm becomes 1 around 4× 105 MC steps. In figure 4(c),

√
N |J (t)| increases

more rapidly than the case ofα = 0.2.
√

N |J (t = 0)| is
√

0.6 ∼ 0.775 and increases to 2.2
at the last MC step. There, the acceptance rate of Monte Carlo spin flip, which is usually
more than 50% ofN , becomes about 20% ofN . In figure 4(d), QJ starts at

√
0.4 ∼ 0.632

and keeps increasing during the studied MC steps. Other samples withα = 0.6 showed
similar behaviour for these quantities.

To find the upper bound ofα which allowsm = 1, we did the simulations withα = 0.8.
In this case, however,m becomes only about 0.9 and we did not find any sets of parameters
which achievem = 1. Thus the critical capacity of PM unlearning is expected to be larger
than 0.6 but smaller than 0.8, yet this may change if we take differentε̄.

6. Discussions

Unlearning of spurious states is a very interesting subject in the study of neural networks.
The algorithm is local and the improvement is rather impressive. Biologically it is related
to an interesting hypothesis on ‘the function of dream sleep’ as discussed in [5].

In this paper, we studied unlearning in the paramagnetic phase of neural network models.
After the unlearning of many dreams, the changes of interactions are expressed by the
paramagnetic correlation function〈SiSj 〉 of the initial model. The condition for this is
that the unlearning parameterε̄ is much smaller than〈SiSj 〉2. Using the high-temperature
expansion to study〈SiSj 〉, we found that this condition is consistent with that suggested for
RS unlearning. We defined theJ ′ model by taking the Hopfield model as an initial model.
The signal-to-noise analysis of theJ ′ model was performed to the infinite order ofβ. The
result supports the idea that our algorithm actually improves the Hopfield model. Briefly,
〈SiSj 〉 of the Hopfield model contains the correlation matrix among embedded patterns,
which changes the signal-to-noise ratio of the Hopfield model.

When interactional changes are large, the expansion rateµ̄ was introduced to control
the amplitude of interactions. When̄µ = 0, interactions become relatively small after much
unlearning. Then the condition on̄ε will be violated eventually and unlearning terms begin
to work as nothing more than random noise. We suppose that this may also happen in
the simulations reported in some papers. In theµ̄, ε̄ → 0 limit with a suitableµ̄/ε̄, the
iterative equation to the second order ofβ has the pseudo-inverse model as a fixed point,
at least for smallα. The appearance of the pseudo-inverse model is important since it can
memorize a set of strongly correlated patterns, for which the Hopfield model does not work
well. The simulations showed that the overlapQJ between the evolving model and the
pseudo-inverse model actually increases close to 1, but does not reach 1. We suppose that
ε̄ should be much smaller than our value to get a better agreement with the theory.
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The studies in this paper were mainly addressed to smallα and the stability of embedded
patterns. This is because, first of all, we wanted to see if our analysis using correlation
functions agrees with the simulations or not. The retrieval properties and large-α fixed-point
models are the next subjects of study. To discuss the case whereα ∼ 0.5 or larger, we
have to take into account higher-order terms in the expansion of〈SiSj 〉J (t). The study of
transient models will become important if there is no physical fixed point.

Figure 5. These diagrams illustrate the change of energy landscape under PM unlearning.◦
denote the embedded patterns. The energies of the low-energy states are expected to become
equal after unlearning since lower-energy states are unlearned more according to the Maxwell–
Boltzmann weights.

To summarize the study, we present intuitive pictures in figure 5, which illustrates how
PM unlearning works. In figure 5(a), the energy landscape of the overloaded Hopfield model
is depicted. No embedded patterns are at the bottom of valleys. Instead, there are many
spurious states at the bottom of valleys having lower energy than the embedded patterns. In
this situation, spurious states are expected to appear rather frequently in the paramagnetic
dynamics since the probability of appearance obeys the Maxwell–Boltzmann distribution.
However, unlearning of them make their energy higher. As unlearning proceeds, their energy
will become equal to that of the embedded patterns as shown in figure 5(b). This situation
is very similar to the results of replica studies for the pseudo-inverse model [4]. Under
this situation, spurious states and embedded patterns are expected to appear with an equal
probability in the dynamics. If unlearning goes further, there will be three possibilities:
(i) |J (t)| decreases, (ii)|J (t)| is rather stable or (iii)|J (t)| increases. Unlearning of
paramagnetic configurations tends to make the energy landscape flat. This corresponds to
case (i). The expansion of interactions compensates for this effect. Thus case (ii) happens
when the expansion ratēµ is chosen properly. When̄µ is larger, case (iii) happens and the
spin configuration will be trapped in a certain energy valley. The problem here is that, as
seen in (32), the range of̄µ where (ii) is realized seems to become narrower or disappear
asα increases. It may be possible to think of some dynamics ofβ which keepsβ

√
N |J (t)|

of order 1. However, it may spoil the locality of unlearning. Probably the simplest way to
avoid (i) and (iii) is just to stop unlearning.

Our formulation using correlation functions is quite general. Here we point out two
possible extensions of our study. Firstly, it is possible to apply the idea to various versions
of the Hopfield model which learn either memories with different weights or memories
with strong correlations. These kinds of patterns seem more natural since the environment
around us seems to give a great number of correlated patterns rather than a limited number of
uncorrelated patterns. Besides, their weights, the frequencies of learning, depend on patterns.
It will be quite interesting to study how unlearning works in such difficult situations.
Secondly, by using correlation functions, the effect of unlearning can be formulated for
the systems which have no energy function. If we have a suitable Hebb rule for the system,
interactional changes by unlearning will be represented by a suitable correlation function in
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the same way as in section 2. The expansion of the correlation function in terms of some
sort of temperature will also be useful to study the effect of unlearning for such systems.

In our study, the concept of temperature plays a very important role. For ordinary
spin models, the system is assumed to be in contact with a heat reservoir and is naturally
described by a temperature. However, there is no such reservoir for neural networks. Then
we may ask what the temperature in our case means. In this respect, the relation between
RS unlearning and PM unlearning is an interesting subject. Note that RS unlearning can
also be formulated in terms of a correlation function made of spurious states if interactional
changes are very small, yet we have no method to estimate the correlation function except
a numerical one. Here we point out another point of view. That is, instead of addressing
the relation, we should rather think of some intrinsic mechanism which causes random
dynamics and generates dreams. Then the problem is to study to what extent this dynamics
is simulated by the usual thermodynamics or random shooting with relaxation. As far as
unlearning is concerned, details of the dynamics will not matter and any dynamics will
work well if undesirable states appear more frequently than the embedded patterns. In any
case, the problem is to evaluate the correlation function in terms of interactions and to see
how it affects the original interactions.

Finally, let us comment on the general aspect of our study. That is, we can regard
our study as a special case of paramagnetic evolution of complex systems. If paramagnetic
configurations reflect a low-energy energy landscape, we may naturally ask what happens to
the systems which have complex energy landscapes after being modified by paramagnetic
learning or unlearning. This question may sound rather academic, however, I think it
deserves to be studied. For one thing, this idea can be helpful in studying optimization
problems since learning about low energy states may make the search for them easier.
Also, if the initial models are random models, it will be possible to introduce models which
have correlated irregular interactions rather than uncorrelated random interactions. Thus it
will be quite interesting and meaningful to study random spin models using our formulation.
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Appendix A

In this appendix, we describe the high-temperature expansion of〈SiSj 〉2 for the Hopfield
model. A related study is found in [11]. In the large-α limit, the results should reduce to
those of the infinite range spin-glass model, which has a simple high-temperature expansion
as was discussed in [12]. In our case, the diagrams which contribute after theξ -average
look like a cross between the ferromagnetic model and the spin-glass model.

The correlation function〈SiSj 〉 is defined by

〈SiSj 〉 =
∑
{S}

SiSj exp(−βH)/Z (A1)

whereZ = ∑
{S} exp(−βH). The summation

∑
{S} is over spin configurations.〈SiSj 〉 is

formally expanded in terms of tanhβJij ∼ βJij , giving

〈SiSj 〉 = βJij + β2
∑′

JikJkj + β3
∑′

JikJklJlj + · · · . (A2)

In the sum
∑′, no two site indices are equal to each other, since a loop of edges should be

factorized to cancel the denominatorZ. This point is important in the Hopfield model as
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we will see in the following and appendix B. In general, a loop gives a factorP after the
ξ -average. More precisely, when all site indices are different, a loop ofJij ’s gives

JijJjk · · · Jzi = PN−L (A3)

where· · · is theξ -average andL is the number ofJij ’s.

Figure A1. Some diagrams which appear in〈SiSj 〉2. The full lines represent terms which come
from one〈SiSj 〉 and the broken lines from other〈SiSj 〉. The first row shows the diagrams with
one loop. The second row shows those with two loops.

Now let us discuss〈SiSj 〉2. Each term in〈SiSj 〉 can be expressed by a zig-zag line
which starts at sitei, visits some different sites and ends at sitej . No site is visited twice
or more in〈SiSj 〉, while in 〈SiSj 〉2, two terms coming from different〈SiSj 〉 can share some
sites other thani or j (see figure A1). Let that number be denoted byns. Although these
sites impose restrictions over the site sum, they create loops, each of which gives a factor
P = αN . Among diagrams with fixedns, the diagrams which have the largest number of
loops are the ladder type, which havens + 1 loops. We can see this as follows. Forns

shared sites, each zig-zag line is divided intons + 1 fragments. When the order of shared
sites is different between two zig-zag lines, there is at least one loop which costs more than
two fragments. This gives a number of loops smaller thanns + 1. When the site order is
the same, two fragments coming from different〈SiSj 〉 can make a loop, givingns+ 1 loops
for this diagram. Therefore the ladder diagrams give the leading contributions to〈SiSj 〉2.
Let us first calculate the contribution of a loop. Imagine a certain loop of lengthl = l1 + l2,
l1 from one〈SiSj 〉 and l2 from another〈SiSj 〉. Using equation (A3), we see that this loop
yields βlPN−l after theξ -average. The summation over internal sites, the sites which are
not shared by two〈SiSj 〉, yields a factorNl−2. This cancels the factorN−l above andl
remains only as a power ofβ. Thus the sum overl1 and l2 givesβ/(1 − β) × β/(1 − β).
Putting these together, we obtain

1

N
A ≡ 1

N

αβ2

(1 − β)2
(A4)

as a contribution from the sum over diagrams of a single loop. Finally the summation over
the number of loops and shared sites gives

〈SiSj 〉2 = 1

N

A

1 − A
. (A5)

This result is also obtained as a by-product of the signal-to-noise analysis of theJ ′ model,
which is discussed in section 4. Note that, whenα → ∞ with fixed J 2

0 ≡ αβ2, this
expression reduces to the paramagnetic correlation function of the infinite-range spin-glass
model with interactional varianceJ0/

√
N . On the other hand, whenα → 0, equation (A5)

reduces toA/N , which is just the square of the ferromagnetic correlation function multiplied
by the number of patternsP .
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Appendix B

In this appendix, we derive the relation( ∑′′
j

(p)

ij

)( ∑′′
j

(p′)
ij

)
= δpp′αp/N (B1)

and ( ∑
j 6=i

∑′′
j

(p)

ij ξ1
j

)( ∑
j ′ 6=i

∑′′
j

(p′)
ij ′ ξ1

j ′

)
= δpp′αp (B2)

where

j
(p)

ij = j
µ

ikj
ν
kl · · · jη

zj (B3)

andj
µ

ik = ξ
µ

i ξ
µ

k /N . These formulae are valid in theN → ∞ limit.
Let us first concentrate on (B1). In the sum

∑′′, site indices are all different and
neighbouring pattern indices are not equal to each other. The restriction on site indices
implies that a certain site appears only once inj

(p)

ij , if it does at all. Further, on such a site,

there are twoξ which have different pattern indices. Therefore twoj
(p)

ij in (B1) should
have the same site indices to give a non-zero contribution except that the order of them
can be different. For this reason, the casep 6= p′ gives zero on the right-hand side. In the
P, N → ∞ limit, the pairing of two terms of the same site order gives the leading term
Np−1P p × (1/N)2p after the site and pattern sum, where we used(j

µ

kl)
2 = 1/N2. This

is the right-hand side of (B1). Thus we should show that the products of two terms with
different site order do not give leading contributions.

In the product of different site order terms, the number of free site indices and the number
of j

µ

ij , which give factorsN and 1/N , respectively, are the same as above. However, the
number of free pattern indices becomes smaller. Let us take a closer look at this point. To
evaluate the number of free pattern indices, we should count the number of loops made of
j

µ

ij . Note that(jµ

kl)
2 is the simplest loop of length two, which gives a factorP after the

µ-sum. In the product of different site orders, there are loops longer than two. These loops
should have lines coming from differentj

(p)

ij alternately since neighbouringjµ

ij in j
(p)

ij do not
have the same pattern index. A loop of this type costs four or more than fourj

µ

ij . Therefore
it gives non-leading terms in (B1). In other words, there appear additional restrictions on
the pattern indices in this case. We should note that the situation is essentially parallel to
the evaluation of〈SiSj 〉2.

Let us turn to (B2). Whenj = j ′, we can follow the argument presented for (B1) and
obtain the leading contributions, which make the right-hand side of (B2) after thej sum.
Whenj 6= j ′, a factorξ1

j restricts the sum over pattern indices in
∑′′

j
(p)

ij ′ since there should

be ξ1
j somewhere inj (p)

ij ′ . The same is true forξ1
j ′ . The rest of the pattern indices should

be paired betweenj (p)

ij and j
(p)

ij ′ to give a non-zero contribution. Thus the number of free
pattern indices is reduced by at least one. Therefore the casej 6= j ′ does not give leading
contributions to the right-hand side.
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